Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus.

نویسندگان

  • L S Barak
  • R H Oakley
  • S A Laporte
  • M G Caron
چکیده

Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin-receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments.

Substitution of arginine-137 of the vasopressin type 2 receptor (V2R) for histidine (R137H-V2R) leads to nephrogenic diabetes insipidus (NDI), whereas substitution of the same residue to cysteine or leucine (R137C/L-V2R) causes the nephrogenic syndrome of inappropriate antidiuresis (NSIAD). These two diseases have opposite clinical outcomes. Still, the three mutant receptors were shown to share...

متن کامل

Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. Th...

متن کامل

Characterization of Three Vasopressin Receptor 2 Variants: An Apparent Polymorphism (V266A) and Two Loss-of-Function Mutations (R181C and M311V)

Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-funct...

متن کامل

Nephrogenic Syndrome of Inappropriate Antidiuresis

Mutations in the vasopressin V2 receptor gene are responsible for two human tubular disorders: X-linked congenital nephrogenic diabetes insipidus, due to a loss of function of the mutant V2 receptor, and the nephrogenic syndrome of inappropriate antidiuresis, due to a constitutive activation of the mutant V2 receptor. This latter recently described disease may be diagnosed from infancy to adult...

متن کامل

Signaling Modification by GPCR Heteromer and Its Implication on X-Linked Nephrogenic Diabetes Insipidus

The involvement of secretin (SCT) and secretin receptor (SCTR) in regulating body water homeostasis is well established. Identified as one of the vasopressin (Vp)-independent mechanisms in fluid balance, SCT regulates aquaporin 2 (AQP2) in the kidney distal collecting duct cells through activating intracellular cAMP production. This ability to bypass Vp-mediated water reabsorption in kidney imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 2001